Decorrelation of low-frequency neural activity by inhibitory feedback
نویسندگان
چکیده
منابع مشابه
Decorrelation of Neural-Network Activity by Inhibitory Feedback
Correlations in spike-train ensembles can seriously impair the encoding of information by their spatio-temporal structure. An inevitable source of correlation in finite neural networks is common presynaptic input to pairs of neurons. Recent studies demonstrate that spike correlations in recurrent neural networks are considerably smaller than expected based on the amount of shared presynaptic in...
متن کاملMonitoring of Regional Low-Flow Frequency Using Artificial Neural Networks
Ecosystem of arid and semiarid regions of the world, much of the country lies in the sensitive and fragile environment Canvases are that factors in the extinction and destruction are easily destroyed in this paper, artificial neural networks (ANNs) are introduced to obtain improved regional low-flow estimates at ungauged sites. A multilayer perceptron (MLP) network is used to identify the funct...
متن کاملDecorrelation by an excitatory-inhibitory network: separating frequencies
We consider a situation in which individual features of the input are represented in the neural system by different frequencies of periodic firings. Thus, if two of the features are presented concurrently, the input to the system will consist of a superposition of two periodic trains. In this paper we present an algorithm that is capable of extracting the individual features from the composite ...
متن کاملLow frequency ultrasonic voice activity detection using convolutional neural networks
Low frequency ultrasonic mouth state detection uses reflected audio chirps from the face in the region of the mouth to determine lip state, whether open, closed or partially open. The chirps are located in a frequency range just above the threshold of human hearing and are thus both inaudible as well as unaffected by interfering speech, yet can be produced and sensed using inexpensive equipment...
متن کاملDecorrelation by Recurrent Inhibition in Heterogeneous Neural Circuits
The activity of neurons is correlated, and this correlation affects how the brain processes information. We study the neural circuit mechanisms of correlations by analyzing a network model characterized by strong and heterogeneous interactions: excitatory input drives the fluctuations of neural activity, which are counterbalanced by inhibitory feedback. In particular, excitatory input tends to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Neuroscience
سال: 2010
ISSN: 1471-2202
DOI: 10.1186/1471-2202-11-s1-o11